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Intraclass Correlations

Intraclass Correlations (ICCs) quantify how similar members of a group are to one another. The statistical
technique is used in several different areas of data analysis from testing mean differences to multilevel de-
scriptive statistics to inter-rater reliability. More recently it has become a popular scoring method for certain
constructs such as emotion differentiation (Kashdan, Barrett, & McKnight (2015)). Within psychological
science, ICCs were accessibly introduced by a Psychological Bulletin paper by Shrout and Fleiss (1979) 1.
They present a framework for understanding six different types of ICCs and how to calculate them.

When I was first learning advanced statistics, the term “Intraclass Correlation” kept popping up in different
statistics courses and topics. While I understood the term within each area, I didn’t have a framework
around ICCs in general. It wasn’t until I published a paper using ICCs that I started to learn what they
were all about (Brown, Goodman, Disabato, Kashdan, Armeli, & Tennen, in press - check it out as its a
great paper lead by a bright young scholar Brad Brown at the University of South Florida). Today, we are
going to build up a schema around ICCs so that we can more deeply understand what they are all about.

In this blog post I will be explaining the difference between the six types of ICCs summarized in Shrout and
Fleiss (1979). I will start with ICC(1, 1) and ICC(1, k) that are often used in multilevel analysis. Then we
will proceed to ICC(2, 1), ICC(2, k), ICC(3, 1), and ICC(3, k) that are often used in inter-rater reliability.
For each type of ICC, I will show estimation with both an ANOVA model and linear mixed effects model.

For the statistical programming, I will be using R - an open source computer software program. For more
information about R go to https://www.r-project.org/about.html. I will also be using a package that I
created called str2str (read as “structure to structure”), which contains a lot of simple wrapper functions
for converting R objects from one structure to another. I find using these functions save a few lines of code
and generally makes code easier to read. If you want to learn more about the package, you can go to the
str2str documentation webpage.

library(str2str)

ICC(1, 1) for multilevel analysis

Intraclass Correlations (ICCs) always occur in the context of grouped data. It might not be a classic form
of grouped data and we might not usually use the word “group” to describe it, but the data will be grouped
nonetheless. Let’s start with a classic example of grouped data: one continuous variable mapped onto one
grouping variable. The InsectSprays dataset contains one continuous variable named “count” and one
grouping variable “spray” with the groups of “spray” labeled as letters. The “count” variable is the number
of insects in a given plot of land and the “spray” variable is the type of insect repellent spray used. Therefore,
the plots of land are grouped into sprays.

1Nowadays, this type of paper would be published in Psychological Methods, but that was not a journal yet and so many
Quantitative Psychology papers would get published in Psycological Bulletin.
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str(InsectSprays)

## ’data.frame’: 72 obs. of 2 variables:
## $ count: num 10 7 20 14 14 12 10 23 17 20 ...
## $ spray: Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 1 1 1 1 1 1 ...

N <- nrow(InsectSprays)
print(N) # cases

## [1] 72

n <- length(unique(InsectSprays$"spray"))
print(n) # groups

## [1] 6

As you can see, the dataset contains 72 cases and 6 groups.

size_by <- c(tapply(InsectSprays$"count", InsectSprays$"spray", FUN = length))
print(size_by)

## A B C D E F
## 12 12 12 12 12 12

size_avg <- mean(size_by)
print(size_avg)

## [1] 12

Furthermore, there are exactly 12 cases in each group, resulting in an average group size of 12. This is
referred to as “balanced” grouped data and something we will be returning to later.

The table of summary statistics and boxplot graph below show meaningful mean differences across groups.
Clearly, some insect repellent sprays are more effective than others. I also wanted to highlight the meaningful
variance differences across groups. Not because ICCs incorperate them, but because ICCs assume equal
variances across groups: homogeneity of variance. Indeed OLS regression, ANOVA, and linear mixed effect
models all assume homogeneity of (within-group) variance. For educational purposes, we will be ignoring
this issue, but I wanted to acknowledge that it is there.

count_by <- split(InsectSprays$"count", f = InsectSprays$"spray")
lv2d(lapply(X = count_by, FUN = summary), along = 1)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## A 7 11.50 14.0 14.500000 17.75 23
## B 7 12.50 16.5 15.333333 17.50 21
## C 0 1.00 1.5 2.083333 3.00 7
## D 2 3.75 5.0 4.916667 5.00 12
## E 1 2.75 3.0 3.500000 5.00 6
## F 9 12.50 15.0 16.666667 22.50 26
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boxplot(count ~ spray, data = InsectSprays)
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Observed variance components

Let’s start with looking at our observed variance components. By “observed”, I mean there is no statistical
model behind them; they are just summary statistics. We are going to split up the “count” variable into
between-group and within-group scores and then take the variance of each.

count_btw <- ave(InsectSprays$"count", InsectSprays$"spray", FUN = mean)
print(count_btw)

## [1] 14.500000 14.500000 14.500000 14.500000 14.500000 14.500000 14.500000
## [8] 14.500000 14.500000 14.500000 14.500000 14.500000 15.333333 15.333333
## [15] 15.333333 15.333333 15.333333 15.333333 15.333333 15.333333 15.333333
## [22] 15.333333 15.333333 15.333333 2.083333 2.083333 2.083333 2.083333
## [29] 2.083333 2.083333 2.083333 2.083333 2.083333 2.083333 2.083333
## [36] 2.083333 4.916667 4.916667 4.916667 4.916667 4.916667 4.916667
## [43] 4.916667 4.916667 4.916667 4.916667 4.916667 4.916667 3.500000
## [50] 3.500000 3.500000 3.500000 3.500000 3.500000 3.500000 3.500000
## [57] 3.500000 3.500000 3.500000 3.500000 16.666667 16.666667 16.666667
## [64] 16.666667 16.666667 16.666667 16.666667 16.666667 16.666667 16.666667
## [71] 16.666667 16.666667
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count_wth <- InsectSprays$"count" - count_btw
print(count_wth)

## [1] -4.50000000 -7.50000000 5.50000000 -0.50000000 -0.50000000 -2.50000000
## [7] -4.50000000 8.50000000 2.50000000 5.50000000 -0.50000000 -1.50000000
## [13] -4.33333333 1.66666667 5.66666667 -4.33333333 0.66666667 -1.33333333
## [19] 1.66666667 1.66666667 3.66666667 5.66666667 -8.33333333 -2.33333333
## [25] -2.08333333 -1.08333333 4.91666667 -0.08333333 0.91666667 -1.08333333
## [31] -0.08333333 -1.08333333 0.91666667 -2.08333333 -1.08333333 1.91666667
## [37] -1.91666667 0.08333333 7.08333333 1.08333333 -0.91666667 -1.91666667
## [43] 0.08333333 0.08333333 0.08333333 0.08333333 -2.91666667 -0.91666667
## [49] -0.50000000 1.50000000 -0.50000000 1.50000000 -0.50000000 2.50000000
## [55] -2.50000000 -2.50000000 -0.50000000 -1.50000000 2.50000000 0.50000000
## [61] -5.66666667 -7.66666667 -1.66666667 5.33333333 -1.66666667 -0.66666667
## [67] -3.66666667 -6.66666667 9.33333333 9.33333333 7.33333333 -3.66666667

var_btw_obs <- var(count_btw)
var_wth_obs <- var(count_wth)
data.frame(var_btw_obs, var_wth_obs)

## var_btw_obs var_wth_obs
## 1 37.5892 14.29812

As expected, the two observed variance components add up to the total observed variance.

var_tot_obs <- var(InsectSprays$"count")
data.frame(var_tot_obs, var_btw_obs + var_wth_obs, "compare" = all.equal(var_tot_obs, var_btw_obs + var_wth_obs), check.names = FALSE)

## var_tot_obs var_btw_obs + var_wth_obs compare
## 1 51.88732 51.88732 TRUE

Now the formula for the ICC(1, 1) based on variance components is fairly simple:

ICC1,1 = σ2
between

σ2
between + σ2

within

If we apply that formula to the observed variance components. . .

icc11_obs <- var_btw_obs / (var_btw_obs + var_wth_obs)
print(icc11_obs)

## [1] 0.724439

Let’s check whether that value is correct with an established R package function:

library(irr)

## Loading required package: lpSolve
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InsectSprays_wide <- t(unstack(InsectSprays, form = count ~ spray))
icc_obj <- icc(InsectSprays_wide)
icc11_irr <- icc_obj[["value"]]
data.frame(icc11_obs, icc11_irr, "compare" = all.equal(icc11_obs, icc11_irr))

## icc11_obs icc11_irr compare
## 1 0.724439 0.7374311 Mean relative difference: 0.01793393

As you can see, the icc function in the irr package does not generate the same ICC(1, 1) value as our
observed ICC(1, 1) value. So the observed variance components are actually incorrect in that they are not
unbiased sample estimates of the population variance components. One way to understand this is to contrast
the ICC(1, 1) with the R2 of the grouping variable “spray” predicting the continuous variable “outcome”
from a one-way ANOVA model.

aov_obj <- aov(count ~ spray, data = InsectSprays)
r2_aov <- summary.lm(aov_obj)[["r.squared"]]
print(r2_aov)

## [1] 0.724439

First thing to point out is that R2 is NOT the same as ICC(1, 1).

data.frame(r2_aov, icc11_irr, "compare" = all.equal(r2_aov, icc11_irr))

## r2_aov icc11_irr compare
## 1 0.724439 0.7374311 Mean relative difference: 0.01793393

However, you might recongize the R2 value. It is the same value as the (incorrect) observed ICC(1, 1).

data.frame(r2_aov, icc11_obs, "compare" = all.equal(r2_aov, icc11_obs))

## r2_aov icc11_obs compare
## 1 0.724439 0.724439 TRUE

This makes sense as the formula for the R2 from a one-way ANOVA is essentially the same as the formula
for the ICC(1, 1), expect that it uses sum of squares rather than variance components:

R2 = SSbetween

SSbetween + SSwithin

We can manually calculate R2 to see this:

aov_anova <- anova(aov_obj)
ss_btw <- aov_anova["spray", "Sum Sq"]
ss_wth <- aov_anova["Residuals", "Sum Sq"]
r2_ss <- ss_btw / (ss_btw + ss_wth)
data.frame(r2_ss, r2_aov, "compare" = all.equal(r2_ss, r2_aov))

## r2_ss r2_aov compare
## 1 0.724439 0.724439 TRUE
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We can also compute the observed variance components from the sum of squares to fully see the connection.
This makes sense as R2 is variance explained. If we convert the sum of squares to variances, we get the same
value as above.

var_btw_ss <- ss_btw / (N - 1)
data.frame(var_btw_ss, var_btw_obs, "compare" = all.equal(var_btw_ss, var_btw_obs))

## var_btw_ss var_btw_obs compare
## 1 37.5892 37.5892 TRUE

var_wth_ss <- ss_wth / (N - 1)
data.frame(var_wth_ss, var_wth_obs, "compare" = all.equal(var_wth_ss, var_wth_obs))

## var_wth_ss var_wth_obs compare
## 1 14.29812 14.29812 TRUE

r2_var <- var_btw_ss / (var_btw_ss + var_wth_ss)
data.frame(r2_var, r2_aov, "compare" = all.equal(r2_var, r2_aov))

## r2_var r2_aov compare
## 1 0.724439 0.724439 TRUE

So the observed ICC(1, 1) is really the R2 and is technically not considered an intraclass correlation.

Now, if you are like me, the definition of R2 and the definition of ICC(1, 1) sound an awful lot alike. R2 is “the
proportion of variance explained by the grouping variable”; ICC(1, 1) is “the proportion of variance between
groups”. And both are sometimes interpreted as “the proportion of variance due to group membership”.

Indeed, the R2 and the model ICC(1, 1) both have the same F-value:

Fvalue_aov <- aov_anova["spray", "F value"]
Fvalue_irr <- icc_obj[["Fvalue"]]
data.frame(Fvalue_aov, Fvalue_irr, "compare" = all.equal(Fvalue_aov, Fvalue_irr))

## Fvalue_aov Fvalue_irr compare
## 1 34.70228 34.70228 TRUE

This makes some sense as both F-values are testing whether there are mean differences across groups. How
exactly is the ICC(1, 1) different from R2 though? To do that, we are going to calculate the variance
components from a one-way ANOVA model.

ANOVA variance components

We already computed the ANOVA model above. But, we will re-calculate it for clarification and then print
the traditional ANOVA table.

aov_obj <- aov(count ~ spray, data = InsectSprays)
aov_anova <- anova(aov_obj)
print(aov_anova)
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## Analysis of Variance Table
##
## Response: count
## Df Sum Sq Mean Sq F value Pr(>F)
## spray 5 2668.8 533.77 34.702 < 2.2e-16 ***
## Residuals 66 1015.2 15.38
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Now, we know that the ANOVA model can be used to calculate the observed variance components using
the sum of squares. But we showed those are incorrect variance components for ICC(1, 1). Instead, we can
calculate the correct variance components with the ANOVA model using alternative formulas.

We will start with the between-group variance component.

ms_btw <- aov_anova["spray", "Mean Sq"]
ms_wth <- aov_anova["Residuals", "Mean Sq"]
var_btw_aov <- (ms_btw / size_avg) - (ms_wth / size_avg)
data.frame(var_btw_aov, var_btw_obs, "compare" = all.equal(var_btw_aov, var_btw_obs))

## var_btw_aov var_btw_obs compare
## 1 43.19878 37.5892 Mean relative difference: 0.129855

As you can see, the ANOVA variance component is not the same as the observed variance component.
Instead, it is quite a bit larger than the observed variance component. We already determined that the
observed variance components are incorrect. We can now explain that the observed between-group variance
component ignores two statistical issues that the ANOVA between-group variance component deals with
(pg. 21; Snijders & Bosker, 2012):

1) Degrees of freedom. The observed between-group variance component does not take into account
the number of groups. The formula for a variance is SS

df , where SS = sum of squares and df = degrees of
freedom 2. When calculating the observed between-group variance component from the sum of squares
above, I used (N - 1) as the degrees of freedom. However, that degree of freedom value is independent
of how many groups the data has. We could have had 24 groups of 3 rather than 6 groups of 12 and
the degrees of freedom would still have been (N - 1). That doesn’t really make much sense. The first
number in the degrees of freedom formula can be thought of as the number of pieces of information.
While the original count score has N = 72 pieces of information, one for each case, the between-group
count score (aka count_btw) does not. It only has 6 values - one for each group. The between-group
score simply repeats the 6 group means to fill up the dataset. So the first number should really be n
= 6 pieces of information. This is exactly what the ANOVA model does. The between-group degrees
of freedom is n - 1 = 5.

df_btw <- aov_anova["spray", "Df"]
print(df_btw)

## [1] 5

Indeed, another way to calculate the observed between-group variance component would be without repeating
the 6 group means.

2Note, this is the formula for the mean square in ANOVA. Indeed, mean squares are a type of variance
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count_btw2 <- c(tapply(InsectSprays$"count", InsectSprays$"spray", FUN = mean))
print(count_btw2)

## A B C D E F
## 14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

var_btw_obs2 <- var(count_btw2)
data.frame(var_btw_obs2, var_btw_aov, "compare" = all.equal(var_btw_obs2, var_btw_aov))

## var_btw_obs2 var_btw_aov compare
## 1 44.48056 43.19878 Mean relative difference: 0.02881655

Now this revised observed between-group variance component is closer to the ANOVA variance component,
but still slighty off. This time it is larger, rather than smaller though. However, this number actually appears
as the first term in the ANOVA between-grouop variance component formula.

first_term <- (ms_btw / size_avg)
data.frame(first_term, var_btw_obs2, "compare" = all.equal(first_term, var_btw_obs2))

## first_term var_btw_obs2 compare
## 1 44.48056 44.48056 TRUE

So the ANOVA model is actually calculating the variance of the group means. But the ANOVA model
variance component was still a bit smaller. Well that is because there is a second term in the formula: we
subtract out ms_wth / size_avg. To understand why that is, we move on to the second statistical issue.

2) Group mean sampling error. The group means are sample estimates, which implies they will
fluctuate based on sampling error. Just like the overall sample mean has a standard error around it
representing it’s sampling error, each group mean does as well. This implies some of the between-group
variance is due to sampling error. In other words, the observed variance of the sample group means is
not equal to the “true” variance of the population group means; instead it is larger due to the extra
sampling error variance. How much? Well that is inversely proportional to the size of the groups. The
larger the groups, the larger the “sample” is for each estimated group mean, and the less sampling
error. That is the role of the size_avg value in the second term ms_wth / size_avg. The formula is
substracting out the extra sampling error variance and it makes sense that as the group size increases,
the amount of sampling error variance goes down. The ms_wth value represents how much variance
there is within-groups. While we are often interested in the within-group variance and might want a
lot of it, in terms of estimating the group means, within-group variance is noise. The more variable
scores are in a sample, the less precise the mean is estimated. This is true for the overall sample and
for each group’s “sample”.

Now, the astute reader might have noticed that the term ms_wth / size_avg looks familiar. That is because
it is very similar to the sampling error variance of the mean (aka squared standard error of the mean): σ2

n .
That is no coincidence. The expected amount of extra sampling error variance for the group means is the
sampling error variance of the means! Once, we subtract that sampling error out, we get the correct variance
component.

Let’s move on to the within-group variance component.
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var_wth_aov <- ms_wth
print(var_wth_aov)

## [1] 15.38131

Well that was easy. The within-group variance component is just the mean square within. Again, it is
different than the observed within-group variance component.

data.frame(var_wth_aov, var_wth_obs, "compare" = all.equal(var_wth_aov, var_wth_obs))

## var_wth_aov var_wth_obs compare
## 1 15.38131 14.29812 Mean relative difference: 0.07042254

The observed within-group variance component is smaller. This is because of the first statistical issue we
discussed above: 1) degrees of freedom. When we calculated the observed within-group variance component
from the sum of squares, we used N - 1 as the degrees of freedom. We went over the first number in the
degrees of freedom formula, now we will go over the second. The second number can be thought of as
the number of parameters you have to estimate. To calculate our within-group count score, we needed to
estimate the 6 group means. With the overall sample variance, we only need to estimate 1 mean - the overall
sample mean, so having the second number in the degrees of freedom formula be 1 makes sense. However,
in our case of estimating 6 means, 1 doesn’t make much sense for this second number. Instead, the number
6 makes more sense. Therefore, if we recalculate our observed within-group variance component with N - 6
= 66 degrees of freedom, we will get the correct value.

var_wth_obs2 <- ss_wth / (N - n)
data.frame(var_wth_obs2, var_wth_aov, "compare" = all.equal(var_wth_obs2, var_wth_aov))

## var_wth_obs2 var_wth_aov compare
## 1 15.38131 15.38131 TRUE

To sum up the degrees of freedom issue, here is a conceptual formula for degrees of freedom that is applicable
to many situations:

df = (#OfPiecesOfInformation) − (#OfParametersEstimated)

.

The reason the within-group variance component formula is simpler is because we don’t have the second issue:
2) Group mean sampling error. We are only looking within-group; thus, by definition, group mean sampling
error isn’t an issue. One way to think of this is that the data occur at multiple “levels” (aka multilevel data).
There is a between-group “level” and a within-group “level”. Sampling error at the between-group level will
not directly impact variances at the within-group level. That is why in multilevel analysis, the statistical
complications usually concern the between-group level more so than the within-group level.

For example, traditional multilevel modeling will decompose observed scores at multiple levels into between-
group and within-group scores to obtain between-group coefficients and within-group coefficients. Statis-
ticians have proposed multilevel structual equation modeling, which does a latent decomposition of the
observed scores into between-group variables and within-group variables that takes into account 1) degrees
of freedom and 2) group mean sampling error (Muthen, 1994). Quantitative psychologists have shown that
it is primarily the between-group coefficients that benefit from multilevel structural equation modeling,
and that the within-group coefficients are usually very similar to those from multilevel modeling (Preacher,
Zyphur, & Zhang, 2010).

Now that we have our two variance components, let’s go ahead and calculate the ICC(1, 1) from the ANOVA
model.

9

https://journals.sagepub.com/doi/abs/10.1177/0049124194022003006
https://psycnet.apa.org/record/2010-18042-001
https://psycnet.apa.org/record/2010-18042-001


icc11_aov <- var_btw_aov / (var_btw_aov + var_wth_aov)
data.frame(icc11_aov, icc11_irr, "compare" = all.equal(icc11_aov, icc11_irr))

## icc11_aov icc11_irr compare
## 1 0.7374311 0.7374311 TRUE

As expected, the ANOVA variance components gives us the correct ICC(1, 1) value.

Note, even though the formulas for the ANOVA variance components include the average group size, it is
only slightly influenced by it. The same goes for the ICC(1, 1). To show you, let’s repeat the dataset 10
times so that each group now contains 120 cases rather than 12 cases, and see how much the ICC(1, 1) value
changes.

tmp <- replicate(n = 10, InsectSprays, simplify = FALSE)
InsectSprays2 <- ld2d(tmp, along = 1)
aov_obj2 <- aov(count ~ spray, data = InsectSprays2)
aov_anova2 <- anova(aov_obj2)
print(aov_anova2)

## Analysis of Variance Table
##
## Response: count
## Df Sum Sq Mean Sq F value Pr(>F)
## spray 5 26688 5337.7 375.42 < 2.2e-16 ***
## Residuals 714 10152 14.2
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

If we compare this 10x ANOVA table to the original ANOVA table. . .

print(aov_anova)

## Analysis of Variance Table
##
## Response: count
## Df Sum Sq Mean Sq F value Pr(>F)
## spray 5 2668.8 533.77 34.702 < 2.2e-16 ***
## Residuals 66 1015.2 15.38
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

. . . we can see that the sum of squares between and within are exactly 10x as large and the between-group
degrees of freedom are the same, but the within-group degrees of freedom are not exactly 10x as large -
rather 714 / 66 = 10.8181818x as large. Therefore, the within-group variance component is going to be
slightly smaller relative to the between-group variance component as the average group size increases.

ms_wth2 <- aov_anova2["Residuals", "Mean Sq"]
var_wth_aov2 <- ms_wth2
data.frame(var_wth_aov2, var_wth_aov, "compare" = all.equal(var_wth_aov2, var_wth_aov))

## var_wth_aov2 var_wth_aov compare
## 1 14.21802 15.38131 Mean relative difference: 0.08181818
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This will in turn, result in the between-group variance component being slightly larger. This makes sense
with the idea that larger group sizes result in less group mean sampling error and a smaller amount of extra
sampling error variance in the observed variance of the group means.

ms_btw2 <- aov_anova2["spray", "Mean Sq"]
var_btw_aov2 <- (ms_btw2 / 120) - (ms_wth2 / 120)
data.frame(var_btw_aov2, var_btw_aov, "compare" = all.equal(var_btw_aov2, var_btw_aov))

## var_btw_aov2 var_btw_aov compare
## 1 44.36207 43.19878 Mean relative difference: 0.02622268

These differences in the variance components will result in a slightly larger ICC(1, 1).

icc11_aov2 <- var_btw_aov2 / (var_btw_aov2 + var_wth_aov2)
data.frame(icc11_aov2, icc11_aov, "compare" = all.equal(icc11_aov2, icc11_aov))

## icc11_aov2 icc11_aov compare
## 1 0.7572892 0.7374311 Mean relative difference: 0.02622268

However, because the R2 does not depend on degrees of freedom, its value will be identical.

ss_btw2 <- aov_anova2["spray", "Sum Sq"]
ss_wth2 <- aov_anova2["Residuals", "Sum Sq"]
r2_ss2 <- ss_btw2 / (ss_btw2 + ss_wth2)
data.frame(r2_ss, r2_ss2, "compare" = all.equal(r2_ss, r2_ss2))

## r2_ss r2_ss2 compare
## 1 0.724439 0.724439 TRUE

LME model variance components

Let’s move on to calculating the ICC(1, 1) with a linear mixed effects (LME) model. When doing multilevel
analysis, this is often how the ICC(1, 1) is calculated. Perhaps because the data analyst is usually going
to use linear mixed effects modeling for their prediction models (Note, linear mixed effects modeling and
multilevel modeling are different names for the same thing). I specifically used the term “linear mixed effects
model” rather than “multilevel modeling” because we will be using these models outside the context of
multilevel analysis when we move on to ICC(2, 1), ICC(2, k), ICC(3, 1), and ICC(3, k).

We will use the R package lme4 for the linear mixed effects models. Although we could use the R package
nlme for the ICC(1, 1) and ICC(1, k), we could not use it for the other 4 types of ICCs since they require
two non-nested grouping variables. lme4 has no problem with multiple non-nested grouping variables.

We will specify a null, or “intercept-only” LME model where we have no predictors. Random effects are
specified for the grouping variable “spray”.

library(lme4)

## Loading required package: Matrix
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lmer_obj <- lmer(count ~ 1 + (1 | spray), data = InsectSprays, REML = TRUE)
summary(lmer_obj)

## Linear mixed model fit by REML [’lmerMod’]
## Formula: count ~ 1 + (1 | spray)
## Data: InsectSprays
##
## REML criterion at convergence: 417.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0820 -0.5298 -0.1040 0.4426 2.4325
##
## Random effects:
## Groups Name Variance Std.Dev.
## spray (Intercept) 43.20 6.573
## Residual 15.38 3.922
## Number of obs: 72, groups: spray, 6
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 9.500 2.723 3.489

Now in the LME model we don’t have sum of squares or mean squares. Instead we directly estimate the
variance components. The model will split up the continuous variable “count” variance into a between-group
variance component and a within-group variance component.

var_comp <- as.data.frame(VarCorr(lmer_obj))
var_btw_lmer <- var_comp[var_comp$"grp" == "spray", "vcov"]
var_wth_lmer <- var_comp[var_comp$"grp" == "Residual", "vcov"]
data.frame(var_btw_lmer, var_wth_lmer)

## var_btw_lmer var_wth_lmer
## 1 43.19878 15.38131

One other thing that confused me at first was that the correct variance components do not add up the total
variance of the outcome.

var_tot <- var(InsectSprays$"count")
var_tot_lmer <- var_btw_lmer + var_wth_lmer
data.frame(var_tot, var_tot_lmer, "compare" = all.equal(var_tot, var_tot_lmer))

## var_tot var_tot_lmer compare
## 1 51.88732 58.58009 Mean relative difference: 0.1289866

The sum of the correct variance components is quite a bit larger than the observed total variance. This is
again due to the degrees of freedom issue we talked about above. The observed total variance is agnostic to
whether the data are grouped or not and to how many groups there are. As far as the total variance formula
is concerned, the continuous variable “count” is not grouped in any way. Another way to think about the
descrepency is whether we calculate the between-group variance based on the 6 group means or repeat the
group means to fill up the 72 cases of the dataset. The observed total variance is based on repeating the
group mean information, while the variance components are not. By repeating the group mean information,
the two observed variance components add up to the total variance.
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print(count_btw)

## [1] 14.500000 14.500000 14.500000 14.500000 14.500000 14.500000 14.500000
## [8] 14.500000 14.500000 14.500000 14.500000 14.500000 15.333333 15.333333
## [15] 15.333333 15.333333 15.333333 15.333333 15.333333 15.333333 15.333333
## [22] 15.333333 15.333333 15.333333 2.083333 2.083333 2.083333 2.083333
## [29] 2.083333 2.083333 2.083333 2.083333 2.083333 2.083333 2.083333
## [36] 2.083333 4.916667 4.916667 4.916667 4.916667 4.916667 4.916667
## [43] 4.916667 4.916667 4.916667 4.916667 4.916667 4.916667 3.500000
## [50] 3.500000 3.500000 3.500000 3.500000 3.500000 3.500000 3.500000
## [57] 3.500000 3.500000 3.500000 3.500000 16.666667 16.666667 16.666667
## [64] 16.666667 16.666667 16.666667 16.666667 16.666667 16.666667 16.666667
## [71] 16.666667 16.666667

print(var_btw_obs)

## [1] 37.5892

var_tot_obs <- var_btw_obs + var_wth_obs
data.frame(var_tot_obs, var_tot, "compare" = all.equal(var_tot_obs, var_tot))

## var_tot_obs var_tot compare
## 1 51.88732 51.88732 TRUE

But, if we calculate the observed between-group variance component without repeating the group means,
the sum of the observed variance components is much closer to the sum of the correct variance components.

print(count_btw2)

## A B C D E F
## 14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

print(var_btw_obs2)

## [1] 44.48056

var_tot_obs2 <- var_btw_obs2 + var_wth_obs2
data.frame(var_tot_obs2, var_tot_lmer, "compare" = all.equal(var_tot_obs2, var_tot_lmer))

## var_tot_obs2 var_tot_lmer compare
## 1 59.86187 58.58009 Mean relative difference: 0.02141219

However, the sum of the observed variance components is still slightly larger than the sum of the correct
variance components due to the group mean sampling error issue we talked about above.

Let’s go ahead and calculate the ICC(1, 1) from the LME model now.
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icc11_lmer <- var_btw_lmer / (var_btw_lmer + var_wth_lmer)
data.frame(icc11_lmer, icc11_aov, "compare" = all.equal(icc11_lmer, icc11_aov))

## icc11_lmer icc11_aov compare
## 1 0.7374311 0.7374311 TRUE

As you can see, the ICC(1, 1) computed from the LME model is the same as the one from the ANOVA model.
That will not always be the case though. The InsectSprays dataset is known as what is “balanced”: each
group is the same size (aka has the same number of cases). Indeed the size_by vector is not really a variable,
but rather a constant: each group has exactly 12 cases. What happens when the data are “unbalanced”
from the group sizes differing? Let’s find out.

keep_rows <- c(1:2, 13:16, 25:30, 37:44, 49:58, 61:72)
InsectSprays3 <- InsectSprays[keep_rows, ]
size_by3 <- c(tapply(InsectSprays3$"count", InsectSprays3$"spray", FUN = length))
print(size_by3)

## A B C D E F
## 2 4 6 8 10 12

size_avg3 <- mean(size_by3)
print(size_avg3)

## [1] 7

I have removed some cases from the InsectSprays dataset such that the group sizes now range from 2 to 12
rather than all being 12: an unbalanced dataset. Let’s now calculate the variance components and ICC(1,
1) from the ANOVA model and LME model. We start with the ANOVA model:

aov_obj3 <- aov(count ~ spray, data = InsectSprays3)
aov_anova3 <- anova(aov_obj3)
ms_btw3 <- aov_anova3["spray", "Mean Sq"]
ms_wth3 <- aov_anova3["Residuals", "Mean Sq"]
var_btw_aov3 <- (ms_btw3 / size_avg3) - (ms_wth3 / size_avg3)
var_wth_aov3 <- ms_wth3
icc11_aov3 <- var_btw_aov3 / (var_btw_aov3 + var_wth_aov3)
data.frame(var_btw_aov3, var_wth_aov3, icc11_aov3)

## var_btw_aov3 var_wth_aov3 icc11_aov3
## 1 41.9727 17.11042 0.7104009

To make sure I did my math right, we confirm with the established irr R package.

library(plyr)
tmp <- unstack(InsectSprays3, count ~ spray)
InsectSprays3_wide <- rbind.fill.matrix(lapply(X = tmp, FUN = t.default))
rownames(InsectSprays3_wide) <- levels(InsectSprays3$"spray")
icc11_irr3 <- icc(InsectSprays3_wide)[["value"]]

## Warning in qf(1 - alpha/2, ns - 1, ns * (nr - 1)): NaNs produced
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## Warning in qf(1 - alpha/2, ns * (nr - 1), ns - 1): NaNs produced

print(icc11_irr3)

## [1] NA

Uh oh - we get NA back along with a warning message saying NaNs were produced. This is because the
icc function from the irr package requires groups to have no missing data in order to be included in the
calculation. In the wide version of our dataset InspectSprays3_wide there is only one group with no missing
data: F.

print(InsectSprays3_wide)

## 1 2 3 4 5 6 7 8 9 10 11 12
## A 10 7 NA NA NA NA NA NA NA NA NA NA
## B 11 17 21 11 NA NA NA NA NA NA NA NA
## C 0 1 7 2 3 1 NA NA NA NA NA NA
## D 3 5 12 6 4 3 5 5 NA NA NA NA
## E 3 5 3 5 3 6 1 1 3 2 NA NA
## F 11 9 15 22 15 16 13 10 26 26 24 13

The icc function provides us a warning message, essentially telling us it can’t calculate an ICC with only one
group. The way the icc function in the irr package is set up, we are forced to only use column observations
present in each group to get an estimate of any ICC.

library(irr)
icc11_irr3 <- icc(InsectSprays3_wide[, 1:2])[["value"]]
data.frame(icc11_aov3, icc11_irr3, "compare" = all.equal(icc11_aov3, icc11_irr3))

## icc11_aov3 icc11_irr3 compare
## 1 0.7104009 0.8174953 Mean relative difference: 0.150752

We get a different value from our manual ANOVA calculation. . . However, the irr package value is really
not to be trusted since we weren’t able to use all the data in InspectSprays3_wide. Let’s transition to a
different R package now. The ICC1 function in the multilevel package will allow us to use all the data in
InspectSprays3_wide by providing it the ANOVA object.

library(multilevel)

## Loading required package: nlme

##
## Attaching package: ’nlme’

## The following object is masked from ’package:lme4’:
##
## lmList

## Loading required package: MASS
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icc11_ml3 <- ICC1(aov_obj3)
data.frame(icc11_aov3, icc11_ml3, "compare" = all.equal(icc11_aov3, icc11_ml3))

## icc11_aov3 icc11_ml3 compare
## 1 0.7104009 0.7104009 TRUE

As you can see, the multilevel R package provides us with the same value as our manual ANOVA calcu-
lation. We now move on to compute the ICC(1, 1) from the LME model with the unbalanced dataset.

lmer_obj3 <- lmer(count ~ 1 + (1 | spray), data = InsectSprays3, REML = TRUE)
var_comp3 <- as.data.frame(VarCorr(lmer_obj3))
var_btw_lmer3 <- var_comp3[var_comp3$"grp" == "spray", "vcov"]
var_wth_lmer3 <- var_comp3[var_comp3$"grp" == "Residual", "vcov"]
icc11_lmer3 <- var_btw_lmer3 / (var_btw_lmer3 + var_wth_lmer3)
data.frame(

"var_btw" = c(var_btw_lmer3, var_btw_aov3),
"var_wth" = c(var_wth_lmer3, var_wth_aov3),
"icc11" = c(icc11_lmer3, icc11_aov3),

row.names = c("lmer","aov"))

## var_btw var_wth icc11
## lmer 35.51613 17.05036 0.6756420
## aov 41.97270 17.11042 0.7104009

When the data are unbalanced, the ANOVA and LME estimates will differ. One way to think about
unbalanced data is a missing data problem. The cases which are present in the original dataset InsectSprays,
but not in InsectSprays3, are missing. We can visualize this by stacking InsectSprays3.

library(reshape)

##
## Attaching package: ’reshape’

## The following objects are masked from ’package:plyr’:
##
## rename, round_any

## The following object is masked from ’package:Matrix’:
##
## expand

tmp <- suppressWarnings(melt(InsectSprays3_wide, measure.vars = colnames(InsectSprays3_wide), na.rm = FALSE))
names(tmp) <- c("spray","observation","count")
InsectSprays4 <- tmp[order(tmp$"spray", tmp$"observation"), sort(names(tmp))]
print(InsectSprays4)

## count observation spray
## 1 10 1 A
## 7 7 2 A
## 13 NA 3 A
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## 19 NA 4 A
## 25 NA 5 A
## 31 NA 6 A
## 37 NA 7 A
## 43 NA 8 A
## 49 NA 9 A
## 55 NA 10 A
## 61 NA 11 A
## 67 NA 12 A
## 2 11 1 B
## 8 17 2 B
## 14 21 3 B
## 20 11 4 B
## 26 NA 5 B
## 32 NA 6 B
## 38 NA 7 B
## 44 NA 8 B
## 50 NA 9 B
## 56 NA 10 B
## 62 NA 11 B
## 68 NA 12 B
## 3 0 1 C
## 9 1 2 C
## 15 7 3 C
## 21 2 4 C
## 27 3 5 C
## 33 1 6 C
## 39 NA 7 C
## 45 NA 8 C
## 51 NA 9 C
## 57 NA 10 C
## 63 NA 11 C
## 69 NA 12 C
## 4 3 1 D
## 10 5 2 D
## 16 12 3 D
## 22 6 4 D
## 28 4 5 D
## 34 3 6 D
## 40 5 7 D
## 46 5 8 D
## 52 NA 9 D
## 58 NA 10 D
## 64 NA 11 D
## 70 NA 12 D
## 5 3 1 E
## 11 5 2 E
## 17 3 3 E
## 23 5 4 E
## 29 3 5 E
## 35 6 6 E
## 41 1 7 E
## 47 1 8 E
## 53 3 9 E
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## 59 2 10 E
## 65 NA 11 E
## 71 NA 12 E
## 6 11 1 F
## 12 9 2 F
## 18 15 3 F
## 24 22 4 F
## 30 15 5 F
## 36 16 6 F
## 42 13 7 F
## 48 10 8 F
## 54 26 9 F
## 60 26 10 F
## 66 24 11 F
## 72 13 12 F

We have a “balanced” dataset, where each group has 12 observations, but there is missing data, making the
observed data inbalanced. Both ANOVA and LME use case-wise deletion (with the data in the long format),
so InsectSprays4 is converted to InsectSprays3 before the calculations are performed by each model. I
will show we get the exact same results:

all.equal(InsectSprays3, na.omit(InsectSprays4[c("count","spray")]),
check.attributes = FALSE) # don't check row.names for equality

## [1] TRUE

aov_obj4 <- aov(count ~ spray, data = InsectSprays4)
icc11_aov4 <- ICC1(aov_obj4)
data.frame(icc11_aov4, icc11_aov3, "compare" = all.equal(icc11_aov4, icc11_aov3))

## icc11_aov4 icc11_aov3 compare
## 1 0.7104009 0.7104009 TRUE

lmer_obj4 <- lmer(count ~ 1 + (1 | spray), data = InsectSprays4, REML = TRUE)
var_comp4 <- as.data.frame(VarCorr(lmer_obj4))
icc11_lmer4 <- var_comp4[var_comp4$"grp" == "spray", "vcov"] / (var_comp4[var_comp4$"grp" == "spray", "vcov"] + var_comp4[var_comp4$"grp" == "Residual", "vcov"])
data.frame(icc11_lmer4, icc11_lmer3, "compare" = all.equal(icc11_lmer4, icc11_lmer3))

## icc11_lmer4 icc11_lmer3 compare
## 1 0.675642 0.675642 TRUE

From a missing data framework, the LME estimates would be considered more unbiased. LME uses direct
ML estimation to allow the outcome to be missing at random, while the ANOVA model assumes the outcome
to be missing completely at random 3. However, the ANOVA estimate of the ICC(1, 1) from the unbalanced
case with missing data (0.7104009) is closer to the “true” value without any missing data (0.7374311)
compared to the LME estimate (0.675642). I tried to find some quantitative psychology studies comparing
the ANOVA estimate and the LME estimate of the ICC(1, 1) with unbalanced data, but I could not find
any. Again, I believe the LME estimates have better statistical properties, but I could be wrong.

3Note, linear mixed effect models only assume the outcome to be missing at random. It still assumes the predictors are
missing completely at random.
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We have now gone over the first type of ICC: ICC(1, 1). You might be wondering what the numbers refer
to in the “ICC(1, 1)” name. The first number is simply a placeholder for type of ICC and is categorical.
Quantitative psychologists other than Shrout and Fleiss (1979) have used letters rather than numbers for
the first number (e.g., McGraw & Wong, 1996). The second number/letter refers to the number of cases
the ICC represents. The number “1” refers to a single case in each group, while the letter “k” refers to the
number of cases in each group. For the InsectSprays example, this would be size_avg = 12. So while
ICC(1, 1) refers to the ICC of a single case in each group, ICC(1, k) will refer to the ICC of the average of
the cases in each group.

ICC(1, k) for multilevel analysis

ICC(1, k) uses the same statistical model as ICC(1, 1). Let’s reacquaint ourselves with the linear mixed
effects model for the ICC(1, 1) as it is the same model for the ICC(1, k).

print(N) # number of total counts

## [1] 72

print(size_avg) # average number counts in each group

## [1] 12

lmer_obj <- lmer(count ~ 1 + (1 | spray), data = InsectSprays, REML = TRUE)
summary(lmer_obj)

## Linear mixed model fit by REML [’lmerMod’]
## Formula: count ~ 1 + (1 | spray)
## Data: InsectSprays
##
## REML criterion at convergence: 417.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.0820 -0.5298 -0.1040 0.4426 2.4325
##
## Random effects:
## Groups Name Variance Std.Dev.
## spray (Intercept) 43.20 6.573
## Residual 15.38 3.922
## Number of obs: 72, groups: spray, 6
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 9.500 2.723 3.489

var_comp <- as.data.frame(VarCorr(lmer_obj))
print(var_comp)

## grp var1 var2 vcov sdcor
## 1 spray (Intercept) <NA> 43.19878 6.572578
## 2 Residual <NA> <NA> 15.38131 3.921902
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var_btw_lmer <- var_comp[var_comp$"grp" == "spray", "vcov"]
var_wth_lmer <- var_comp[var_comp$"grp" == "Residual", "vcov"]

Here is the formula for the ICC(1, 1) based on the variance components:

ICC1,1 = σ2
between

σ2
between + σ2

within

An alternative way to write this formula is:

ICC1,1 = σ2
between

σ2
between + σ2

within

1

These two formulas are mathematically identical because all we are doing is dividing by 1. The 1 is from the
second number/letter in the ICC naming scheme from Shrout and Fleiss (1979). It refers to the ICC being
based on a single observation for that group. However, this alternative formula now generalizes to the ICC
based on the average number of observations in each group. Therefore, the formula for the ICC(1, k) is:

ICC1,k = σ2
between

σ2
between + σ2

within

k

Because we are averaging across the observation dimension, we are decreasing the impact of the within-group
variance. Similar to indices of internal consistency (e.g., Cronbach’s Alpha), the more raters (e.g., items in
the case of Cronbach’s Alpha), the higher the reliability.

Let’s go ahead and apply that formula to our insect spray example:

icc1k_lmer <- var_btw_lmer / (var_btw_lmer + (var_wth_lmer / size_avg))
print(icc1k_lmer)

## [1] 0.9711835

Because the ICC(1, k) is often used in multilevel analysis, it is available in the multilevel R package.
However, it is often referred to as ICC2 in the multilevel literature, so that is the name of the function:

aov_obj <- aov(count ~ spray, data = InsectSprays)
icc1k_aov <- ICC2(aov_obj)
data.frame(icc1k_lmer, icc1k_aov, "compare" = all.equal(icc1k_lmer, icc1k_aov))

## icc1k_lmer icc1k_aov compare
## 1 0.9711835 0.9711835 TRUE

As you can see, the values are the same. We will get the same value with the irr R package as well:

InsectSprays_wide <- t(unstack(InsectSprays, form = count ~ spray))
icc_obj <- icc(InsectSprays_wide, model = "oneway", unit = "average")
icc1k_irr <- icc_obj[["value"]]
data.frame(icc1k_lmer, icc1k_irr, "compare" = all.equal(icc1k_lmer, icc1k_irr))

## icc1k_lmer icc1k_irr compare
## 1 0.9711835 0.9711835 TRUE
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The interpretation of the ICC(1, k) is the reliability of the group means. So if we wanted to create an
aggregate score of the group means, the ICC(1, k) would provide us the reliability of that score. Clearly, in
the case of the insect sprays example, the reliability of that score would be very high: over 95%.

I want to take a moment and explain why I am using the symbol size_avg rather than k to refer to the
average group size. For the ICC(1, 1) and ICC(1, k) we have only one grouping variable. In the inspect
sprays example, that grouping variable is spray. There is not “observation” grouping variable. There is
nothing that makes observation #1 in group A similar to observation #1 in group B; there is nothing that
makes observation #2 in group A similar to observation #2 in group B, etc. If we do have similarities across
the group observations, then we might have a second grouping variable called “observation”. In that case we
could use ICC(2, 1), ICC(2, k), ICC(3, 1), or ICC(3, k) since they allow for two grouping variables. ICC(1,
1) and ICC(1, k) assume we only have one grouping variable. Therefore the symbol k does not refer to a
second grouping variable, but rather the average size of the groups. I wanted to make this clear, so I used
the symbol size_avg rather than k in the R code. Note that adding a second grouping variable will then
increase our reliablity as ICC(1, k) is always less than or equal to ICC(2, k) and ICC(3, k).

What about when you having unbalanced data. We looked at this before for ICC(1, 1). Here is the alternative
dataset we created with certain cases removed:

keep_rows <- c(1:2, 13:16, 25:30, 37:44, 49:58, 61:72)
InsectSprays3 <- InsectSprays[keep_rows, ]
print(InsectSprays3)

## count spray
## 1 10 A
## 2 7 A
## 13 11 B
## 14 17 B
## 15 21 B
## 16 11 B
## 25 0 C
## 26 1 C
## 27 7 C
## 28 2 C
## 29 3 C
## 30 1 C
## 37 3 D
## 38 5 D
## 39 12 D
## 40 6 D
## 41 4 D
## 42 3 D
## 43 5 D
## 44 5 D
## 49 3 E
## 50 5 E
## 51 3 E
## 52 5 E
## 53 3 E
## 54 6 E
## 55 1 E
## 56 1 E
## 57 3 E
## 58 2 E
## 61 11 F
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## 62 9 F
## 63 15 F
## 64 22 F
## 65 15 F
## 66 16 F
## 67 13 F
## 68 10 F
## 69 26 F
## 70 26 F
## 71 24 F
## 72 13 F

We will also have a different average number of observations in each group.

size_by3 <- c(tapply(InsectSprays3$"count", InsectSprays3$"spray", FUN = length))
print(size_by3)

## A B C D E F
## 2 4 6 8 10 12

size_avg3 <- mean(size_by3)
print(size_avg3)

## [1] 7

We apply the same formula:

lmer_obj3 <- lmer(count ~ 1 + (1 | spray), data = InsectSprays3, REML = TRUE)
var_comp3 <- as.data.frame(VarCorr(lmer_obj3))
var_btw_lmer3 <- var_comp3[var_comp3$"grp" == "spray", "vcov"]
var_wth_lmer3 <- var_comp3[var_comp3$"grp" == "Residual", "vcov"]
icc1k_lmer3 <- var_btw_lmer3 / (var_btw_lmer3 + (var_wth_lmer3 / size_avg3))
print(icc1k_lmer3)

## [1] 0.9358196

We can check this result out with the ICC function from the psych package since it allows you to use a linear
mixed effects model to handle the missing data.

library(plyr)
tmp <- unstack(InsectSprays3, count ~ spray)
InsectSprays3_wide <- rbind.fill.matrix(lapply(X = tmp, FUN = t.default))
rownames(InsectSprays3_wide) <- levels(InsectSprays3$"spray")
print(InsectSprays3_wide)

## 1 2 3 4 5 6 7 8 9 10 11 12
## A 10 7 NA NA NA NA NA NA NA NA NA NA
## B 11 17 21 11 NA NA NA NA NA NA NA NA
## C 0 1 7 2 3 1 NA NA NA NA NA NA
## D 3 5 12 6 4 3 5 5 NA NA NA NA
## E 3 5 3 5 3 6 1 1 3 2 NA NA
## F 11 9 15 22 15 16 13 10 26 26 24 13
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library(psych)

##
## Attaching package: ’psych’

## The following object is masked from ’package:str2str’:
##
## m2d

ICC_obj3 <- ICC(InsectSprays3_wide, missing = FALSE, lmer = TRUE)
icc1k_ICC3 <- ICC_obj3[["results"]][ICC_obj3[["results"]]$"type" == "ICC1k", "ICC"]
data.frame(icc1k_lmer3, icc1k_ICC3, compare = all.equal(icc1k_lmer3, icc1k_ICC3))

## icc1k_lmer3 icc1k_ICC3 compare
## 1 0.9358196 0.9600965 Mean relative difference: 0.02594183

So the value of the ICC(1, k) is actually different. This is because the ICC function in the psych R package
does not use size_avg, but instead uses size_max - the maximum number of observations in any group.
I personally don’t think this makes as much sense since you are assuming you have more information in
the data than you actually do. But this practice is often done with indices of internal consistency (e.g.,
Cronbach’s Alpha) as well and is attempting to better estimate what the reliability coefficient would be
if you had complete data, which could correspond better to the population parameter. The drawback is
the group means in your actual sample don’t actually have that high of reliability due to the missing data.
Regardless, we should be able reproduce it:

size_max <- max(size_by3)
icc1k_lmer3_max <- var_btw_lmer3 / (var_btw_lmer3 + (var_wth_lmer3 / size_max))
data.frame(icc1k_lmer3_max, icc1k_ICC3, compare = all.equal(icc1k_lmer3_max, icc1k_ICC3))

## icc1k_lmer3_max icc1k_ICC3 compare
## 1 0.9615328 0.9600965 Mean relative difference: 0.001493716

The values are still very slightly different - enough that it is not due to estimation error from the optimization
algorithm in lmer or something. I don’t understand why these values are different, so I am unable to resolve
this confusion. Perhaps in the future, I will and update this blog post. With that unsatisfying answer, we
will go on to ICC(2, 1)!

ICC(2, 1) for inter-rater reliability

While ICC(1, 1) is often associated with multilevel analysis, ICC(2, 1) is more so associated with inter-rater
reliability. For ICC(2, 1), we are going to use an example of wanting an average writing rating for each
student in a school. For example, say we want to rate the quality of students’ written essays in response to a
standardized prompt. For simplicity, we will say the essays are given a single, overall quality rating ranging
from 1 to 10. We will have 6 students in this example.

Something to keep in mind is that intraclass correlations are always used with continuous ratings. Technically
the ICC models assume the ratings are normally distributed. In practice, the ratings are expected to be
continuous and normal “enough”, for which ordinal response scales (e.g., 1 = “Very Poor”; 2 = “Poor”; 3 =
“Fair”; 4 = “Good”; 5 = “Very Good”) are often deemed okay. However, ICCs cannot be used with nominal
ratings where the response options are not ordered. In this case, you would use Cohen’s Kappa or one of its
variations (see the psych::cohen.kappa function).
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Here is the dataset we will be using for this example. It is actually the example data used in Shrout and
Fleiss (1979).

StudentRatings <- data.frame(
"Ms. W" = c(9, 6, 8, 7, 10, 6),
"Ms. X" = c(2, 1, 4, 1, 5, 2),
"Ms. Y" = c(5, 3, 6, 2, 6, 4),
"Ms. Z" = c(8, 2, 8, 6, 9, 7),
row.names = c("ashley","bailey","chester","daniel","emily","frank"),
check.names = FALSE

)
print(StudentRatings)

## Ms. W Ms. X Ms. Y Ms. Z
## ashley 9 2 5 8
## bailey 6 1 3 2
## chester 8 4 6 8
## daniel 7 1 2 6
## emily 10 5 6 9
## frank 6 2 4 7

As you can see, each row corresponds to a different student who wrote an essay and each column refers to
a different teacher who rated the quality of the students’ essays. The values in the dataset are the ratings
themselves from 1 to 10. Right away, you might notice that this dataset is structured differently than
InsectSprays. There are two important differences:

1) The InsectSpray dataset is in the “long” format for grouped data, while the StudentRatings dataset
is in the “wide” format for grouped data. In the “long” format there is a variable for the group labels.
For InsectSprays this is the “spray” variable labeled as letters. For StudentRatings, this information
is in the rows names specifying which row refers to which teacher’s ratings. We can restructure the
data from wide to long though.

library(reshape)
tmp <- as.data.frame(t(as.matrix(StudentRatings, force.rownames = TRUE)))
StudentRatings2 <- rev(melt(tmp, measure.vars = colnames(tmp),

variable_name = "student"))
print(StudentRatings2)

## value student
## 1 9 ashley
## 2 2 ashley
## 3 5 ashley
## 4 8 ashley
## 5 6 bailey
## 6 1 bailey
## 7 3 bailey
## 8 2 bailey
## 9 8 chester
## 10 4 chester
## 11 6 chester
## 12 8 chester
## 13 7 daniel
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## 14 1 daniel
## 15 2 daniel
## 16 6 daniel
## 17 10 emily
## 18 5 emily
## 19 6 emily
## 20 9 emily
## 21 6 frank
## 22 2 frank
## 23 4 frank
## 24 7 frank

Now the StudentRatings2 dataset looks similar to the InsectSprays dataset where the “value” variable
is like the “count” variable and the “student” variable is like the “spray” variable. However, something is
missing. . . which brings us to the second difference between the datasets.

2) The InsectSpray dataset has one grouping variable, while the StudentRatings dataset has two group-
ing variables. The InsectSpray dataset just has the spray grouping variable. But the StudentRatings
dataset has a student grouping variable and a teacher grouping variable. Indeed, we have both row-
names and colnames in StudentRatings. The rownames represent one grouping variable and the
colnames represent another. You could technically say that the InsectSprays dataset has a second
grouping variable, which we created when we converted the data from long to wide format to get
InsectSprays_wide.

print(InsectSprays_wide)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## A 10 7 20 14 14 12 10 23 17 20 14 13
## B 11 17 21 11 16 14 17 17 19 21 7 13
## C 0 1 7 2 3 1 2 1 3 0 1 4
## D 3 5 12 6 4 3 5 5 5 5 2 4
## E 3 5 3 5 3 6 1 1 3 2 6 4
## F 11 9 15 22 15 16 13 10 26 26 24 13

We have a row for each spray and then the columns are unspecified. The columns would arguably need to
correspond to separate groups to say the columns represent another grouping variable. Perhaps each row
corresponds to a particular plot of land that received different sprays throughout the year. However given
the InsectSprays dataset does not provide any information about this potential second grouping variable,
its safer to assume each value in the dataset corresponds to a different plot of land and that the columns in
InsectSprays_wide are not separate groups.

Now StudentRatings2 has the student grouping variable, but the teacher grouping variable went away!
It is certainly still there, it is just that our restructuring got rid of it. If we use a different function for
restructuring the data, we can retain the teacher grouping variable in addition to the teacher grouping
variable.

library(str2str)
StudentRatings3 <- stack2(data = StudentRatings, select.nm = names(StudentRatings),

rtn.el.nm = "rating", rtn.vrbnames.nm = "teacher", rtn.rownames.nm = "student",
order.by.rownames = FALSE, keep.nm = NULL) # need keep = NULL due to str2str bug

print(StudentRatings3)
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## student teacher rating
## 1 ashley Ms. W 9
## 2 bailey Ms. W 6
## 3 chester Ms. W 8
## 4 daniel Ms. W 7
## 5 emily Ms. W 10
## 6 frank Ms. W 6
## 7 ashley Ms. X 2
## 8 bailey Ms. X 1
## 9 chester Ms. X 4
## 10 daniel Ms. X 1
## 11 emily Ms. X 5
## 12 frank Ms. X 2
## 13 ashley Ms. Y 5
## 14 bailey Ms. Y 3
## 15 chester Ms. Y 6
## 16 daniel Ms. Y 2
## 17 emily Ms. Y 6
## 18 frank Ms. Y 4
## 19 ashley Ms. Z 8
## 20 bailey Ms. Z 2
## 21 chester Ms. Z 8
## 22 daniel Ms. Z 6
## 23 emily Ms. Z 9
## 24 frank Ms. Z 7

We now have two grouping variables: 1) students, 2) teachers. Once we have two grouping variables we have
the option to move beyond ICC(1, 1) and on to ICC(2, 1) (or ICC(3, 1) as we will see later on). ICC(2, 1) is
not possible with only one grouping variable: two grouping variables are needed. (To prevent any confusion,
the number 2 in ICC(2, 1) does not refer to two grouping variables, but is simply a category label and does
not carry any quantitative meaning. Indeed sometimes the category label A is used instead of 2 resulting
in ICC(A, 1): Liljequist, Elfving, & Skavberg-Roaldsen, 2019)) With two grouping variables, we don’t have
just one between-group variance component, but two separate between-group variance components. This
means we will have three variance components: 1) between-student, 2) between-teacher, 3) within-groups.

Let’s go ahead and calculate these variance components. We will start with the ANOVA model. Although
we won’t be going over the incorrect observed variance components, the same two statistical issues are still
at play: 1) degrees of freedom and 2) group mean sampling error.

ANOVA variance components

Because we will need them in just a moment, let’s calculate the same descriptive information about the
TeacherRating3 dataset we did for the InsectSprays dataset.

N <- nrow(StudentRatings3)
print(N)

## [1] 24

n <- length(unique(StudentRatings3$"student"))
print(n)

## [1] 6
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k <- length(unique(StudentRatings3$"teacher"))
print(k)

## [1] 4

We have 24 cases in the dataset. There are 6 students and 4 teachers. Notice, instead of calculating size_avg
as the average number of ratings for each student, we have k as the number of teachers. They give the exact
same number, but the use of the term k highlights that we have a second grouping variable now.

The formula for the ANOVA model with the students ratings dataset will include the rating variable on the
left hand side and the two grouping variables on the right hand side.

aov_obj <- aov(rating ~ student + teacher, data = StudentRatings3)
aov_anova <- anova(aov_obj)
print(aov_anova)

## Analysis of Variance Table
##
## Response: rating
## Df Sum Sq Mean Sq F value Pr(>F)
## student 5 56.208 11.242 11.027 0.0001346 ***
## teacher 3 97.458 32.486 31.866 9.454e-07 ***
## Residuals 15 15.292 1.019
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We can again calculate the correct variance components from the ANOVA model. We will start with the
between-student variance component:

ms_student <- aov_anova["student", "Mean Sq"]
ms_within <- aov_anova["Residuals", "Mean Sq"]
var_student_aov <- (ms_student / k) - (ms_within / k)
print(var_student_aov)

## [1] 2.555556

Followed by the between-teacher variance component:

ms_teacher <- aov_anova["teacher", "Mean Sq"]
var_teacher_aov <- (ms_teacher / n) - (ms_within / n)
print(var_teacher_aov)

## [1] 5.244444

And then the within-groups variance component is simply the mean square within like the ICC(1, 1):

var_within_aov <- ms_within
print(var_within_aov)

## [1] 1.019444
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Before we talked about ICC(1, 1) being defined as “the proportion of variance between groups” or interpreted
as “the proportion of variance due to group membership”. The definition of ICC(2, 1) is not so straight
forward because we have two separate grouping variables. And in the case of inter-rater reliability, we are
focused on one grouping variable being the participants we want scores for and the other grouping variable
being the raters that are treated as a means to an end of obtaining reliable participant scores. We don’t
really care about the raters per se and are usually not interested in scores for the raters. In the context of
our example, the participants are our students we want writing quality scores for and the raters are teachers
who we are using to obtain reliable writing scores.

Therefore, the key grouping variable of interest is students and the key between-group variance component is
the between-students one. We want “the proportion of variance between students”. So we are now specifying
which grouping variable we are focusing on since there are multiple.

Let’s now return to the formula for the ICC(1, 1) based on variance components:

ICC1,1 = σ2
between

σ2
between + σ2

within

One way to think about this formula is that it is the between-group variance of interest divided the total
variance. With the insect spray example, we only had one between-group variance - between-sprays variance
- which naturally was in the numerator. Then the denominator was the sum of all the variance components.
We can apply that same logic to the student rating example and get the ICC(2, 1) formula based on variance
components:

ICC2,1 = σ2
student

σ2
student + σ2

teacher + σ2
within

The between-student variance is in the numerator and the denominator is the sum of all the variance
components.

Other than “proportion of variance between students”, another way to define the ICC(2, 1) is as a form of
reliability. Reliability coefficient formulas usually have the following structure:

Reliability = σ2
true

σ2
true + σ2

error

In the student ratings example, the “true” variance is the between-student variance and the “error” variance
is the sum of the between-teacher and within-groups variances. It makes sense that the between-teacher
variance would be treated as error because we don’t want teachers giving systematically different ratings
than each other. We want them to be similar to each other, or reliable. Indeed, that is the whole idea of
inter-rater reliability: do different raters, in this case teachers, give similar ratings for the same student.
Systematically different ratings cause between-teacher variance. I say systematically because teacher ratings
are bound to differ due to semi-random processes such as their mood on that particular day or whether they
recently graded older students’ essays that are of higher quality, etc. Those semi-randomly different ratings
would be in the within-groups variance since it is unrelated to students or teachers. After all, random is
defined as unrelated to anything else in the model.

Let’s go ahead and calculate the ICC(2, 1):

icc21_aov <- var_student_aov / (var_student_aov + var_teacher_aov + var_within_aov)
print(icc21_aov)

## [1] 0.2897638

We can check to make sure we have the correct value with the irr package.
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icc_obj <- icc(ratings = StudentRatings, model = "twoway", type = "agreement")
icc21_irr <- icc_obj[["value"]]
data.frame(icc21_aov, icc21_irr, "compare" = all.equal(icc21_aov, icc21_irr))

## icc21_aov icc21_irr compare
## 1 0.2897638 0.2897638 TRUE

The multilevel package does not have a function for calculating the ICC(2, 1) function as it is not tradi-
tionally used in multilevel analysis. However, the psych package does.

ICC_obj <- ICC(x = StudentRatings, lmer = TRUE)
icc21_ICC <- ICC_obj[["results"]][ICC_obj[["results"]]$"type" == "ICC2", "ICC"]
data.frame(icc21_aov, icc21_ICC, "compare" = all.equal(icc21_aov, icc21_ICC))

## icc21_aov icc21_ICC compare
## 1 0.2897638 0.2897642 Mean relative difference: 1.429381e-06

The psych package is using a linear mixed effects model to compute the ICC(2, 1) (when lmer = TRUE),
so the value is slightly different. The negligable difference in the later decimal points are due to estimation
error from the linear mixed effects model optimization algorithm. The ICC function can also provide us with
the variance components to ensure we calculated them correctly.

varcomp_ICC <- d2v(ICC_obj[["lme"]]["variance"])
names(varcomp_ICC)[1:2] <- c("student","teacher")
print(varcomp_ICC)

## student teacher Residual Total
## 2.555563 5.244451 1.019443 8.819457

Indeed, these are the same variance components we calculated (except for negligable differences due to the
linear mixed effects model optimization algorithm):

data.frame(
"var_student" = c(var_student_aov, varcomp_ICC["student"]),
"var_teacher" = c(var_teacher_aov, varcomp_ICC["teacher"]),
"var_within" = c(var_within_aov, varcomp_ICC["Residual"]),
"icc11" = c(icc21_aov, icc21_ICC),

row.names = c("manual","psych"))

## var_student var_teacher var_within icc11
## manual 2.555556 5.244444 1.019444 0.2897638
## psych 2.555563 5.244451 1.019443 0.2897642

Let’s now calculate the ICC(2, 1) with linear mixed effects modeling ourselves to discover that our variance
components will then match exactly those from the psych R package.

LME variance components

Again, we will need the data in long format:
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print(StudentRatings3)

## student teacher rating
## 1 ashley Ms. W 9
## 2 bailey Ms. W 6
## 3 chester Ms. W 8
## 4 daniel Ms. W 7
## 5 emily Ms. W 10
## 6 frank Ms. W 6
## 7 ashley Ms. X 2
## 8 bailey Ms. X 1
## 9 chester Ms. X 4
## 10 daniel Ms. X 1
## 11 emily Ms. X 5
## 12 frank Ms. X 2
## 13 ashley Ms. Y 5
## 14 bailey Ms. Y 3
## 15 chester Ms. Y 6
## 16 daniel Ms. Y 2
## 17 emily Ms. Y 6
## 18 frank Ms. Y 4
## 19 ashley Ms. Z 8
## 20 bailey Ms. Z 2
## 21 chester Ms. Z 8
## 22 daniel Ms. Z 6
## 23 emily Ms. Z 9
## 24 frank Ms. Z 7

Again, we will specify a null, or “intercept-only” LME model where we have no predictors. However, this
time we have two different grouping variables, so we will have two different sets of random effects: one for
students and one for teachers.

lmer_obj <- lmer(rating ~ 1 + (1 | student) + (1 | teacher), data = StudentRatings3,
REML = TRUE)

summary(lmer_obj)

## Linear mixed model fit by REML [’lmerMod’]
## Formula: rating ~ 1 + (1 | student) + (1 | teacher)
## Data: StudentRatings3
##
## REML criterion at convergence: 91.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5153 -0.3782 0.3378 0.5360 0.8607
##
## Random effects:
## Groups Name Variance Std.Dev.
## student (Intercept) 2.556 1.599
## teacher (Intercept) 5.244 2.290
## Residual 1.019 1.010
## Number of obs: 24, groups: student, 6; teacher, 4
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##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 5.292 1.334 3.967

Again, in the LME model we don’t have sum of squares or mean squares. Instead we directly estimate the
variance components. The model will split up the “rating” variance into a between-group variance component
for students, a between-group variance component for teachers, and a within-group variance component.

var_comp <- as.data.frame(VarCorr(lmer_obj))
print(var_comp)

## grp var1 var2 vcov sdcor
## 1 student (Intercept) <NA> 2.555563 1.598613
## 2 teacher (Intercept) <NA> 5.244451 2.290077
## 3 Residual <NA> <NA> 1.019443 1.009675

var_student_lmer <- var_comp[var_comp$"grp" == "student", "vcov"]
var_teacher_lmer <- var_comp[var_comp$"grp" == "teacher", "vcov"]
var_within_lmer <- var_comp[var_comp$"grp" == "Residual", "vcov"]

Let’s go and compare these to the variance components from the ICC function in the psych R package:

var_lmer <- c(var_student_lmer, var_teacher_lmer, var_within_lmer)
var_ICC <- varcomp_ICC[-length(varcomp_ICC)]
var_compare <- unlist(Map(var_lmer, var_ICC, f = all.equal, check.attributes = FALSE))
var_all <- rbind.data.frame(var_lmer, var_ICC, var_compare)
names(var_all) <- c("student","teacher","within")
row.names(var_all) <- c("lmer","ICC","compare")
print(var_all)

## student teacher within
## lmer 2.555563 5.244451 1.019443
## ICC 2.555563 5.244451 1.019443
## compare 1.000000 1.000000 1.000000

The 1.0s in the last row indicate the “lmer” and “ICC” rows are exactly identical. Let’s go ahead and
calculate the ICC(2, 1) value itself.

icc21_lmer <- var_student_lmer / (var_student_lmer + var_teacher_lmer + var_within_lmer)
print(icc21_lmer)

## [1] 0.2897642

data.frame(icc21_lmer, icc21_ICC, "compare" = all.equal(icc21_lmer, icc21_ICC))

## icc21_lmer icc21_ICC compare
## 1 0.2897642 0.2897642 TRUE
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The value of the ICC(2, 1) itself means that about 30% of the overall variance in student ratings is due to
different students. It also means that any given teacher’s ratings of a group of students is about 30% reliable.
I don’t know about you, but 30% reliability does not sound very good. I would not take any teacher ratings
seriously if they only had 30% reliability.

One way to improve the reliability of teacher ratings is to use the average of four teachers’ raters rather than
just one teacher’s rating. The ICC(2, 1) provides the reliability of a single teacher’s rating, similar to how
the ICC(1, 1) refers to a single observation in the group. ICC(2, k) will refer to the average score for each
student across the four teachers, similar to how ICC(1, k) refers to the average of the observations in each
group.

ICC(2, k) for inter-rater reliability

ICC(2, k) has the same relationship to ICC(2, 1) as ICC(1, k) has to ICC(1, 1). ICC(2, k) is the inter-rater
reliability of the average score across the k raters. In our student ratings example, ICC(2, 1) was the inter-
rater reliability of a single teacher’s rating. ICC(2, k) is the inter-rater reliability of the score from averaging
the four teacher’s ratings.

Now the formula for the ICC(2, 1) was:

ICC2,1 = σ2
student

σ2
student + σ2

teacher + σ2
within

We are going to make the same change we made to the ICC(1, 1) formula and divide the variance components
unique to the denominator by the number of teachers associated with the ICC(2, 1): 1 teacher. We also
now have two variance components unique to the denominator that are treated as measurement error: 1)
between-teacher variance component and 2) within-groups variance component. Both get divided by the
number of teachers.

ICC2,1 = σ2
student

σ2
student + σ2

teacher

1 + σ2
within

1

We can now replace the 1 with k for the ICC(2, k) formula. Note, I am not using size_avg anymore to
highlight that we have the second grouping variable and k represents the number of groups for the second
grouping variable (i.e., teachers).

ICC2,k = σ2
student

σ2
student + σ2

teacher

k + σ2
within

k

If we apply that formula, we get:

icc2k_lmer <- var_student_lmer / (var_student_lmer + (var_teacher_lmer / k) + (var_within_lmer / k))
print(icc2k_lmer)

## [1] 0.620051

We can check this with the irr R package:

icc_obj <- icc(StudentRatings, model = "twoway", type = "agreement", unit = "average")
icc2k_irr <- icc_obj[["value"]]
data.frame(icc2k_lmer, icc2k_irr, "compare" = all.equal(icc2k_lmer, icc2k_irr))

## icc2k_lmer icc2k_irr compare
## 1 0.620051 0.6200505 Mean relative difference: 7.646633e-07
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The negligable difference is due to the icc function in the irr package using an ANOVA model rather than
a linear mixed effects model. We can also compare our ICC(2, k) value to that from the ICC function in the
psych package which will use a linear mixed effects model when lmer = TRUE.

ICC_obj <- ICC(StudentRatings, lmer = TRUE)
icc2k_ICC <- ICC_obj[["results"]][ICC_obj[["results"]]$"type" == "ICC2k", "ICC"]
data.frame(icc2k_lmer, icc2k_ICC, compare = all.equal(icc2k_lmer, icc2k_ICC))

## icc2k_lmer icc2k_ICC compare
## 1 0.620051 0.620051 TRUE

Now we have exactly identical ICC(2, k) values.

The interpretation of the ICC(2, k) means that about 60% of the variance in the average student rating score
is reliable. So while any given teacher’s rating was only 30% reliable, we doubled our reliability by combining
the ratings from all four teachers. This is to be expected as the whole idea behind reliability is that as you
average over more and more observations, reliability increases. Now, the reliability is still not great and a
student could make a reasonable case for a bad grade on their written essay being due to measurement error.

Rater Bias

Another way to improve the reliability of teacher ratings is to use the same four teachers to grade the essays
for all students in the school. Let’s look at why that is. The ICC(2, 1) and ICC(2, k) assume that the four
teachers we have in the data - Ms. W, Ms. X, Ms. Y, Ms. Z - are a random sample of all the teachers in the
school district. In other words, the ICC(2, 1) and ICC(2, k) assume we are NOT using the same teachers to
grade all student essays. So there might be 40 different teachers in the school district that we have available
to provide student essay ratings. The data we have is from one round of ratings done by these particular
4 teachers on 6 students. With ICC(2, 1) and ICC(2, k), we are assuming the ratings are set up such that
another round of ratings for the next set of 6 students might be done by 4 completely different teachers. So
we might have 10 different rounds of ratings where each round involves 4 different teachers and 6 different
students. At the end of the 10 rounds, we would have 4 ratings by each of the 60 students. However, most
student ratings are made by different teachers. Because of this, the teacher ratings need to agree with each
other to ensure students ratings made by different teachers are comparable. This is why the ICC(2, 1) and
ICC(2, k) are sometimes referred to as the ICCs based on absolute agreement. Another way to think about
it is that we not only care about the covariance structure of the ratings, but also the mean structure of the
ratings.

By absolute agreement, we mean that each teacher’s idea of a 6 out of 10 essay quality is the same, each
teachers idea of a 3 out of 10 essay quality is the same, each teacher’s idea of a 9 out of 10 essay quality is the
same, etc. We can’t have some teacher’s being more lenient grader than others, because they wouldn’t have
absolute agreement. Similarly, We can’t have some teachers being harsher graders than others, because we
wouldn’t have absolute agreement. Let’s see whether we might have some more lenient vs. harsher graders
in the dataset.

print(StudentRatings)

## Ms. W Ms. X Ms. Y Ms. Z
## ashley 9 2 5 8
## bailey 6 1 3 2
## chester 8 4 6 8
## daniel 7 1 2 6
## emily 10 5 6 9
## frank 6 2 4 7
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We can see this by taking the mean of each teacher’s ratings:

colMeans(StudentRatings)

## Ms. W Ms. X Ms. Y Ms. Z
## 7.666667 2.500000 4.333333 6.666667

We can see the teachers clearly differ on how lenient vs. harsh they are. Ms. W is the most lenient grader
giving an average of about 7.5 out of 10 for the 6 students as a set. Mr. X is the harshest grader giving an
average of about 2.5 out of 10 for the 6 students as a set. For example, chester’s essay was rated as an 8 out
of 10 by Ms. W and a 4 out of 10 by Ms. X. Clearly, these two teachers do not have the same idea of what an
8 out of 10 essay quality means or what a 4 out of 10 essay quality means. This results in chester potentially
getting a very different rating depending on what teacher happens to be grading his essay. This is exactly
what we don’t want and is the reason the inter-rater reliability based on the ICC(2, 1) is so low and the
ICC(2, k) is subpar. This is sometimes refered to as rater bias, or in our case, teacher bias. We assume
somewhere in the middle is most accurate, e.g., 6 out of 10 rating. Thus, Ms. X’s ratings are downwardly
biased while Ms. W’s ratings are upwardly biased. It makes sense that bias in the raters would reduce our
inter-rater reliability.

The large differences in the teacher means results in a large between-teacher variance component, and thus
teacher bias. Remember, the between-teacher variance component is treated as measurement error with
ICC(2, 1) and ICC(2, k). The larger the between-teacher variance, the more measurement error, and the
lower the reliability. If we have many different teachers grading different sets of students’ essays, then we
are concerned about teacher bias and will want absolute agreement across the teacher ratings.

As I mentioned earlier, one way to improve our inter-rater reliability is to use the same 4 teachers to grade
all 60 students’ essays. Why does that change the reliability? Because now we don’t need abolute agreement
across the 40 teachers. Now any teacher who is grading chester’s essay, is also grading the other 59 students’
essays. So if Ms. W is a lenient grader, all of the students will get that lenient grading. In other words,
Ms. W is biased to all the students, not just the 6 out of 60 she happened to grade. Similarly, if Ms. X is
a harsh grader, all of the students will get that harsh grading. In other words, Mr. X is biased to all the
students, not just the 6 out of 60 she happened to grade. We essentially can ignore teacher biases because
all 60 students are being graded by the same 4 teachers.

This is exactly what the ICC(3, 1) and ICC(3, k) do, which we will now go over.

ICC(3, 1) for inter-rater reliability

The ICC(3, 1) is the same as ICC(2, 1) in that it requires two different grouping variables, but it now treats
the raters - in our example the teachers - as fixed (rather than random). By fixed, we mean that the same
teachers are rating all the students. This includes any potential future students from the next year that we
want to compare. If we use these 4 teachers to grade this year’s 60 students, but then we use another 4
teachers to grade next year’s 60 students, to compare across years we would need to use ICC(2, 1) instead
of ICC(3, 1). Of course, if we don’t want to compare across years and only within years, then we could use
ICC(3, 1).

While ICC(3, 1) does not care about any teacher biases (aka the mean structure of the ratings), there are
still sources of potential unreliability. It is possible that these four teachers are not consistent in their biases
across students. For example, Ms. W might be more lenient towards some students rather than others. This
can be thought of as an interaction between the teacher and the student. The teacher’s level of leniency or
harshness depends on the student. Similarly, Ms. X might be harsher towards some students rather than
others. While she has an “average” level of harshness, her harshness might differ depending on whether she
likes that student, how good their handwriting is, whether they know the typical grades the student gets
on past writing assignments, etc. We would not want that and this type of interaction bias would reduce
inter-rater reliability.
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For this reason, the ICC(3, 1) is sometimes referred to as the ICC based on relative consistency. We don’t care
whether the teacher’s abolsutely agree with one another, just that they are relatively consistent. Returning
to chester as an example, if Ms. W rates him as above average for her ratings, then we would want Ms. X to
also rate him as above average for her ratings. Their ratings for chester might be completely different (aka
the mean structure can be different), but their rank ordering we want to be the same (aka the covariance
structure should be the same). As you can see, chester was rated as above Ms. W’s average of 7.67 by being
given a rating of 8 and was rated as above Ms. X’s average of 2.50 by being given a rating of 4. However,
let’s see just how close their rank ordering really is. We can do this by examining the z-scores for chester
across teachers.

print(StudentRatings)

## Ms. W Ms. X Ms. Y Ms. Z
## ashley 9 2 5 8
## bailey 6 1 3 2
## chester 8 4 6 8
## daniel 7 1 2 6
## emily 10 5 6 9
## frank 6 2 4 7

means <- apply(X = StudentRatings, MARGIN = 2, FUN = mean)
sds <- apply(X = StudentRatings, MARGIN = 2, FUN = sd)
print(means); print(sds)

## Ms. W Ms. X Ms. Y Ms. Z
## 7.666667 2.500000 4.333333 6.666667

## Ms. W Ms. X Ms. Y Ms. Z
## 1.632993 1.643168 1.632993 2.503331

z_scores <- setNames((8 - means[["Ms. W"]]) / sds[["Ms. W"]], nm = "Ms. W")
append(z_scores, nm = "Ms. X") <- (4 - means[["Ms. X"]]) / sds[["Ms. X"]]
print(z_scores)

## Ms. W Ms. X
## 0.2041241 0.9128709

As you can see, the z-score for Ms. X is quite a bit larger than the z-score for Ms. W. Therefore, Ms. X
is giving chester a relatively better rating than Ms. W, even though Ms. W is giving chester an absolutely
better rating. We can also do this for the other two teachers.

append(z_scores, nm = "Ms. Y") <- (6 - means[["Ms. Y"]]) / sds[["Ms. Y"]]
append(z_scores, nm = "Ms. Z") <- (8 - means[["Ms. Z"]]) / sds[["Ms. Z"]]
print(z_scores)

## Ms. W Ms. X Ms. Y Ms. Z
## 0.2041241 0.9128709 1.0206207 0.5326236

Again some decent discrepencies. The fact that the z-scores for chester range from 0.20 to 1.02 will reduce
the inter-rater reliability. This source of interaction bias is taken into account for both ICC(2, 1) and ICC(3,
1).

Let’s go ahead and calculcate the ICC(3, 1) value itself with an ANOVA model.
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ANOVA variance components

The ANOVA model needed for ICC(3, 1) is actually the exact same as the one needed for ICC(2, 1). I will
repeat the model below, but it is identical to the one we already computed.

aov_obj <- aov(rating ~ student + teacher, data = StudentRatings3)
aov_anova <- anova(aov_obj)
print(aov_anova)

## Analysis of Variance Table
##
## Response: rating
## Df Sum Sq Mean Sq F value Pr(>F)
## student 5 56.208 11.242 11.027 0.0001346 ***
## teacher 3 97.458 32.486 31.866 9.454e-07 ***
## Residuals 15 15.292 1.019
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

We can calculate the variance components from the ANOVA model. Again, they are identical to the ones
we already calculated for ICC(2, 1). We start with the between-student variance components:

ms_student <- aov_anova["student", "Mean Sq"]
ms_within <- aov_anova["Residuals", "Mean Sq"]
var_student_aov <- (ms_student / k) - (ms_within / k)
print(var_student_aov)

## [1] 2.555556

Followed by the between-teacher variance component:

ms_teacher <- aov_anova["teacher", "Mean Sq"]
var_teacher_aov <- (ms_teacher / n) - (ms_within / n)
print(var_teacher_aov)

## [1] 5.244444

And then the within-groups variance component is simply the mean square within like before:

var_within_aov <- ms_within
print(var_within_aov)

## [1] 1.019444

Let’s now return to the formula for the ICC(2, 1) based on variance components:

ICC2,1 = σ2
student

σ2
student + σ2

teacher + σ2
within

The between-student variance is in the numerator and the denominator is the sum of all the variance
components. The difference with ICC(3, 1) is that we don’t care about rater bias (aka teacher bias).
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Therefore, we don’t include the between-teacher variance component in the denominator. The denominator
is no longer the sum of all the variance components, but just the sum of the between-student variance
component and the within-group variance component.

ICC3,1 = σ2
student

σ2
student + σ2

within

Now remember I commented that we still care about the interaction bias. We haven’t talked about it this
way yet, but the within-group variance component is capturing the interaction bias from teachers being
more lenient or harsher depending on the student. However, we can’t really tease this apart from other
sources of within-group variance because each teacher only rates each student once. The cell sample size for
each student-teacher combination is n = 1 and you can’t estimate a variance with cell sample sizes of 1. Of
course, not all of the within-group variance is the interaction bias. Some of the within-group variance is due
to random measurement error. Some of this could be theoretically “true” randomness, but it likely includes
a lot of unconscious influences the teachers are unaware of: whether they think the essay topic is interesting,
how many hours into grading a particular essay is rated, their mood that day, the weather outside, etc.

Note that the ICC(3, 1) still uses the traditional formula for a reliability coefficient:

Reliability = σ2
true

σ2
true + σ2

error

We have simply changed what is included in the error variance for the formula.

Let’s go ahead and calculate the ICC(3, 1):

icc31_aov <- var_student_aov / (var_student_aov + var_within_aov)
print(icc31_aov)

## [1] 0.7148407

We can check to make sure we have the correct value with the irr package.

icc_obj <- icc(ratings = StudentRatings, model = "twoway", type = "consistency")
icc31_irr <- icc_obj[["value"]]
data.frame(icc31_aov, icc31_irr, "compare" = all.equal(icc31_aov, icc31_irr))

## icc31_aov icc31_irr compare
## 1 0.7148407 0.7148407 TRUE

And then also with the psych package.

ICC_obj <- ICC(x = StudentRatings, lmer = TRUE)
icc31_ICC <- ICC_obj[["results"]][ICC_obj[["results"]]$"type" == "ICC3", "ICC"]
data.frame(icc31_aov, icc31_ICC, "compare" = all.equal(icc31_aov, icc31_ICC))

## icc31_aov icc31_ICC compare
## 1 0.7148407 0.7148415 Mean relative difference: 1.114474e-06

Similar to before, the negligable difference in the later decimal points is due to the estimation error in the
optimization algorithm for the linear mixed effects model the ICC function from the psych package uses when
lmer = TRUE. The psych package also can provide us the variance components to ensure we calculated
them correctly with the ANOVA model.
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varcomp_ICC <- d2v(ICC_obj[["lme"]]["variance"])
names(varcomp_ICC)[1:2] <- c("student","teacher")
data.frame(

"var_student" = c(var_student_aov, varcomp_ICC["student"]),
"var_teacher" = c(var_teacher_aov, varcomp_ICC["teacher"]),
"var_within" = c(var_within_aov, varcomp_ICC["Residual"]),
"icc11" = c(icc31_aov, icc31_ICC),

row.names = c("manual","psych"))

## var_student var_teacher var_within icc11
## manual 2.555556 5.244444 1.019444 0.7148407
## psych 2.555563 5.244451 1.019443 0.7148415

Let’s calculate the ICC(3, 1) with a linear mixed effects model now.

LME variance components

Again, it is the exact same model we used for the ICC(2, 1):

lmer_obj <- lmer(rating ~ 1 + (1 | student) + (1 | teacher), data = StudentRatings3,
REML = TRUE)

summary(lmer_obj)

## Linear mixed model fit by REML [’lmerMod’]
## Formula: rating ~ 1 + (1 | student) + (1 | teacher)
## Data: StudentRatings3
##
## REML criterion at convergence: 91.3
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.5153 -0.3782 0.3378 0.5360 0.8607
##
## Random effects:
## Groups Name Variance Std.Dev.
## student (Intercept) 2.556 1.599
## teacher (Intercept) 5.244 2.290
## Residual 1.019 1.010
## Number of obs: 24, groups: student, 6; teacher, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 5.292 1.334 3.967

As well as the exact same variance components:

var_comp <- as.data.frame(VarCorr(lmer_obj))
print(var_comp)

## grp var1 var2 vcov sdcor
## 1 student (Intercept) <NA> 2.555563 1.598613
## 2 teacher (Intercept) <NA> 5.244451 2.290077
## 3 Residual <NA> <NA> 1.019443 1.009675
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var_student_lmer <- var_comp[var_comp$"grp" == "student", "vcov"]
var_teacher_lmer <- var_comp[var_comp$"grp" == "teacher", "vcov"]
var_within_lmer <- var_comp[var_comp$"grp" == "Residual", "vcov"]
var_aov <- c(var_student_aov, var_teacher_aov, var_within_aov)
var_lmer <- c(var_student_lmer, var_teacher_lmer, var_within_lmer)
var_compare <- rbind.data.frame(var_aov, var_lmer)
names(var_compare) <- c("student","teacher","within")
row.names(var_compare) <- c("aov","lmer")
print(var_compare)

## student teacher within
## aov 2.555556 5.244444 1.019444
## lmer 2.555563 5.244451 1.019443

As expected, we get the same variance components and ICC(3, 1) value whether we use the ANOVA model
or the LME model (outside of estimation error due to the optimization algorithm in the linear mixed effects
model).

icc31_lmer <- var_student_lmer / (var_student_lmer + var_within_lmer)
data.frame(icc31_aov, icc31_lmer, "compare" = all.equal(icc31_aov, icc31_lmer))

## icc31_aov icc31_lmer compare
## 1 0.7148407 0.7148415 Mean relative difference: 1.114474e-06

The value of the ICC(3, 1) itself means that about 70% of the overall variance in student ratings is due to
different students - if we can assume the same teachers will be rating all of them. It also means that any one
of the four teacher’s ratings of a group of students is about 70% reliable. This is a much more acceptable
degree of inter-rater reliability compared with the 30% we had before with ICC(2, 1). Clearly, using the
same four teachers to grade all students’ essays has a major reliability advantage.

Let’s now move on to ICC(3, k) where we will see the highest inter-rater reliability.

ICC(3, k) for inter-rater reliability

We use the same statistical model for ICC(3, k) as we did for ICC(3, 1), so we don’t need to recalculate
that. Let’s re-visit the formula for ICC(3, 1):

ICC3,1 = σ2
student

σ2
student + σ2

within

. It is the formula for ICC(2, 1) without the between-teacher variance component since we are ignoring
teacher bias. For ICC(3, k), we are again going to divide the terms unique to the denominator by k. In this
case, just the within-groups variance, resulting in the formula:

ICC3,k = σ2
student

σ2
student + σ2

within

k

Let’s go ahead and apply that formula to our example:

icc3k_lmer <- var_student_lmer / (var_student_lmer + (var_within_lmer / k))
print(icc3k_lmer)
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## [1] 0.9093159

Again, we can check this with the irr and psych R packages:

icc_obj <- icc(StudentRatings, model = "twoway", type = "consistency", unit = "average")
icc3k_irr <- icc_obj[["value"]]
data.frame(icc3k_lmer, icc3k_irr, "compare" = all.equal(icc3k_lmer, icc3k_irr))

## icc3k_lmer icc3k_irr compare
## 1 0.9093159 0.9093155 Mean relative difference: 3.544171e-07

ICC_obj <- ICC(StudentRatings, lmer = TRUE)
icc3k_ICC <- ICC_obj[["results"]][ICC_obj[["results"]]$"type" == "ICC3k", "ICC"]
data.frame(icc3k_lmer, icc3k_ICC, compare = all.equal(icc3k_lmer, icc3k_ICC))

## icc3k_lmer icc3k_ICC compare
## 1 0.9093159 0.9093159 TRUE

The interpretation of the ICC(3, k) means that about 90% of the variance in the average score is reliable -
if we can assume we are using the same teachers for all students. So while any given teacher’s rating was
about 70% reliable, the reliability increased to 90% by averaging the raters from all four teachers. We would
consider this reliability to be great and feel confident that these four teachers could reliability grade all the
students’ essays.

Now something you might have been curious about is how the intraclass correlation relates to the more
traditional Pearson’s correlation. Using similar terminology, we can think of the Pearson correlation as the
interclass correlation. The intraclass correlation is quantifying the correlation of observations within the
same class (aka group). The interclass correlation is quantifying the correlation of observations between
different classes (aka groups). The intraclass correlation is most useful when the raters are random rather
than fixed. When there is a larger population of raters that we don’t have data on, but want to make
inferences about, that is what ICC(2, 1) and ICC(2, k) are for. However, for ICC(3, 1) and ICC(3, k), we
have data on the entire population of raters because those are the only raters we are using. In this case, we
can actually use the interclass correlation.

For example, we could take the average inter-class correlation (aka Pearson’s correlation) between the raters:

tmp <- cor(StudentRatings)
cor_all <- tmp[lower.tri(tmp)]
cor_avg <- mean(cor_all)
print(cor_avg)

## [1] 0.7603077

While this can be useful for people who know how to interpret correlations, it is not a reliability coefficient
like the ICCs were. However, we can use the spearman brown formula to convert the average inter-class
correlation into a reliability coefficient:

sb_coef <- (k * cor_avg) / (1 + (k - 1) * cor_avg)
print(sb_coef)

## [1] 0.9269436

We can check this with the CTT R package:
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library(CTT)

##
## Attaching package: ’CTT’

## The following objects are masked from ’package:psych’:
##
## polyserial, reliability

sb_coef_CTT <- unlist(spearman.brown(cor_avg, input = k, n.or.r = "n"), use.names = FALSE)
data.frame(sb_coef, sb_coef_CTT, "compare" = all.equal(sb_coef, sb_coef_CTT))

## sb_coef sb_coef_CTT compare
## 1 0.9269436 0.9269436 TRUE

Note, this reliability coefficient is different than the ICC(3, k).

data.frame(icc3k_lmer, sb_coef, "compare" = all.equal(icc3k_lmer, sb_coef))

## icc3k_lmer sb_coef compare
## 1 0.9093159 0.9269436 Mean relative difference: 0.01938576

So how is it that ICC(3, k) can also be thought of reliability based on inter-class correlations then? Well
technically ICC(3, k) can be thought of as reliability based on inter-class covariances. The ICC(3, k) works
with the raw datums (i.e., covariance), not their standardized versions (i.e., correlation). Let’s instead,
compute the average inter-class covariance:

tmp <- cov(StudentRatings)
cov_all <- tmp[lower.tri(tmp)]
cov_avg <- mean(cov_all)
print(cov_avg)

## [1] 2.555556

Not very interpretable, but we can use the formula for Cronbach’s Alpha to convert the average inter-item
covariance into a reliability coefficient:

var_all <- apply(X = StudentRatings, MARGIN = 2, FUN = var)
var_avg <- mean(var_all)
alpha_coef <- (k * cov_avg) / (var_avg + (k - 1) * cov_avg)
print(alpha_coef)

## [1] 0.9093155

Now notice that we get the same value as the ICC(3, k). That is because ICC(3, k) and Cronbach’s Alpha
are actually the same reliability coefficient!
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data.frame(icc3k_lmer, alpha_coef, all.equal(icc3k_lmer, alpha_coef))

## icc3k_lmer alpha_coef all.equal.icc3k_lmer..alpha_coef.
## 1 0.9093159 0.9093155 Mean relative difference: 3.544171e-07

(Again, the negligable difference is due to estimation error from the optimization algorithm used by the
linear mixed effects model.) Furthermore, what we calculated above with the average inter-item correlation
was Standardized Cronbach’s Alpha. We can use the psych R package to confirm:

alpha_obj <- alpha(StudentRatings)
alpha_coef_psych <- alpha_obj[["total"]][["raw_alpha"]]
data.frame(alpha_coef, alpha_coef_psych, "compare" = all.equal(alpha_coef, alpha_coef_psych))

## alpha_coef alpha_coef_psych compare
## 1 0.9093155 0.9093155 TRUE

sb_coef_psych <- alpha_obj[["total"]][["std.alpha"]]
data.frame(sb_coef, sb_coef_psych, "compare" = all.equal(sb_coef, sb_coef_psych))

## sb_coef sb_coef_psych compare
## 1 0.9269436 0.9269436 TRUE

Therefore, researchers will sometimes use Cronbach’s Alpha to estimate inter-rater reliability when the
ratings are continuous variables and the raters are the same for all participants. After all, Cronbach’s Alpha
is the same as ICC(3, k)!

Summary

To summarize, I have made a table that compares the six different types of ICCs:

library(knitr)
sum_tab <- data.frame("grouping variables" = character(6), "study raters" = character(6), "type of reliability" = character(6), "mean structure" = character(6), "score used" = character(6),

row.names = c("ICC(1, 1)","ICC(2, 1)","ICC(3, 1)","ICC(1, k)","ICC(2, k)","ICC(3, k)"), check.names = FALSE)
sum_tab["ICC(1, 1)",] <- c("one","random","absolute agreement","yes","single")
sum_tab["ICC(2, 1)",] <- c("two","random","absolute agreement","yes","single")
sum_tab["ICC(3, 1)",] <- c("two","fixed","relative consistency","no","single")
sum_tab["ICC(1, k)",] <- c("one","random","absolute agreement","yes","average")
sum_tab["ICC(2, k)",] <- c("two","random","absolute agreement","yes","average")
sum_tab["ICC(3, k)",] <- c("two","fixed","relative consistency","no","average")
kable(sum_tab)

grouping variables study raters type of reliability mean structure score used
ICC(1, 1) one random absolute agreement yes single
ICC(2, 1) two random absolute agreement yes single
ICC(3, 1) two fixed relative consistency no single
ICC(1, k) one random absolute agreement yes average
ICC(2, k) two random absolute agreement yes average
ICC(3, k) two fixed relative consistency no average
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You can see this same summary of the differences between the six types of ICCs from printing the return
object from the ICC function in the psych R package. The rownames of the data.frame printed provide very
similar information I put in the table above.

ICC(StudentRatings, lmer = TRUE)

## Call: ICC(x = StudentRatings, lmer = TRUE)
##
## Intraclass correlation coefficients
## type ICC F df1 df2 p lower bound upper bound
## Single_raters_absolute ICC1 0.17 1.8 5 18 0.16477 -0.133 0.72
## Single_random_raters ICC2 0.29 11.0 5 15 0.00013 0.019 0.76
## Single_fixed_raters ICC3 0.71 11.0 5 15 0.00013 0.342 0.95
## Average_raters_absolute ICC1k 0.44 1.8 5 18 0.16477 -0.884 0.91
## Average_random_raters ICC2k 0.62 11.0 5 15 0.00013 0.071 0.93
## Average_fixed_raters ICC3k 0.91 11.0 5 15 0.00013 0.676 0.99
##
## Number of subjects = 6 Number of Judges = 4
## See the help file for a discussion of the other 4 McGraw and Wong estimates,

As you can see, there are also formulas for constructing confidence intervals for the ICCs. These are asym-
metrical as the ICC is bounded from 0 to 1 (although you can get values less than 0 in a sample due to
more within-group variance than expected for the group sizes). Perhaps a future blog post will go into the
formulas for the confidence intervals. You can read more about them in McGraw, Kenneth, & Wong (1996).

So hopefully now you have a better sense for what Intraclass Correlations (ICCs) are and what the six
different types of ICCs are. For those interested in more in-depth reading on the topic, I recommend
Liljequist, Elfving, & Shavberg-Roaldson, 2019, which provides a pedagogical discussion of the differences
between ICC(1, 1), ICC(2, 1), and ICC(3, 1).

Epilogue: ICCs as emotion differentiation scores

I also wanted to take this moment to comment on using the ICC to create scores for emotion differentiation
in psychological science (Kashdan, Barrett, & McKnight (2015)). Emotion differentiation is how well a
person is able to distinguish the different emotions they are feeling. Usually this is restricted to a particular
valence of emotion: positive or negative. For example, can a person identify that they are feeling anxious
rather than angry, or sad rather than guilty, etc. (negative emotions). When emotion differentiation was first
quantified with data from experience sampling methods, researchers used the average inter-class correlation
(aka Pearson’s correlation) between a person’s responses to the negative emotion items in the experience
sampling survey (Barrett, Gross, Conner, Benvenuto, 2001; Demiralp et al., 2012). This was most similar
to the ICC(3, k) as I showed above. However, when intra-class correlations started being used rather than
inter-class correlation, the ICC(2, k) was used (Tugade, Fredrickson, & Barrett, 2004; Kashdan, Ferssizidis,
Collins, & Muraven, 2010). This scoring resulted in mean differences between the negative emotion items
being taken into account as well as correlations between the items.

For example, say a person completed an experience sampling survey with items asking them to rate the
intensity of their negative emotions in the moment on a response scale from 0 = “not at all” to 5” =
“extremely”. And say a person tends to not report guilt or sadness most of the time. However, when the
person does report guilt, they tend to also report sadness. They will report a 4 out of 5 for guilt and a 2
out of 5 for sadness. The average inter-item correlation and the ICC(3, k) will not quantify the fact that
the person’s response for sadness tends to be half that for guilt. Instead it will only quantify the fact that
whenever the person reports non-zero guilt, they tend to report non-zero sadness as well. The ICC(2, k) on
the other hand will quantify not only only the fact that whenever the person reports non-zero guilt, they
tend to report non-zero sadness, but also the fact the person’s response for sadness tends to half that for
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guilt. That is because the ICC(2, k) is taking into account the mean structure - mean differences across the
negative emotion items. In terms of inter-rater reliability language (although it conceptually does not apply
here), the item bias would be taken into account. This makes sense to me since a person is theoretically
doing some differentiation if they can identify they are feeling sadness less than guilt, even if they might not
be able to fully differentiate between the two emotions.

However, some researchers have proposed returning to the conceptual underpinnings of the average inter-
class correlation and using the ICC(3, k) rather than the ICC(2, k) (Erbas, Ceulemans, Lee Pe, Koval, &
Kuppens, 2014; Erbas, Ceulemans, Blanke, Sels, Fischer, & Kuppens, 2019). They argue that the mean
structure of the emotions should not be taken into account as it doesn’t theoretically measure emotion
differentiation. I admit I don’t really understand their argument as it seems to treat emotions as light
switches that are either on or off and ignore their degree of intensity. I would think someone with very high
emotion differentiation has excellent self-awareness of the emotions they are feeling and the intensities they
are feeling those emotions at. But perhaps I am missing something.

Regardless of which type of ICC is used to measure emotion differentiation, I do think there is a larger
conceptual problem with the measurement. The ICC cannot distinguish between a person genuinely ex-
periencing multiple emotions at the same time and someone experiencing a single emotion, but reporting
multiple emotions because they lack self-awareness. This seems like a rather big problem since people likely
experience multiple emotions all the time - that is part of the human experience. Therefore, it might be that
the ICC is capturing a person’s tendancy to experience multiple negative emotions at the same time rather
than negative emotion differentiation, per se. This would theoretically make sense with the findings that
negative emotion differentiation tends to predict worse mental health (Sean & Coifman, in press. People
with mental health difficulties often have negative emotion regulation problems and are probably more likely
to be experiencing multiple negative emotions at the same time. Ultimately, it is an unfalsifiable question as
the person’s reports on the experience sampling survey cannot distinguish these two cases. And if we tried
to use qualitative interviews to ask people whether they are genuintely experiencing multiple emotions or
experiencing a single emotion and reporting multiple emotions because they lack self-awareness, they would
only be able to tell us if they were high on emotion differentiation since people low on emotion differentiation
wouldn’t be accurate reporters!

I think that Starr, Hershenberg, Li, & Shaw (2017) put it nicely in their discussion section on page 626:

“Notably, although research has typically asummed that low ED scores reflect an inability to cognitively
discriminate between emotions, they may also report a genuine propensity toward experiencing multiple emo-
tions in clusters rather than individually. . . Although our approach to assessing NED and PED (using EMAs
to calculate intraclass correlations among momentary emotions) is a widely accepted method (Selby et al.,
2014; Shrout & Fleiss, 1979; Tugade et al., 2004), future researchers should develop techniques that better
discriminate between the experience and the discernment of multiple concurrent emotions.”

I don’t have the solution to what better measurement techniques we should use other than the ICC to
measure emotion differentiation. But I agree with Starr and colleagues that ideally researchers would be
able to find something that teases apart genuine concurrent emotions and the inability to discern emotions.
Perhaps someone reading this blog post will figure it out!
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